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An interesting class of Langmuir-Blodgett monolayers, which are called J aggregates or Scheibe ag-
gregates, exhibit energy transfer that is activated through photon absorption and exhibits remarkable
properties of fast and nearly lossless transmission. This paper presents theoretical models intended to
address the question of energy transfer in two-dimensional molecular assemblies such as Scheibe aggre-
gates. Second-quantized microscopic Hamiltonians are proposed and quantum-mechanical calculations
are subsequently performed in several regimes. Numerical simulations illustrate the existence of long
lifetime bound states on impurity ions with shallow energy levels. Due to their efficient energy capture
these ions play the role of acceptors. A formulation of the problem in a strongly nonlinear regime leads
to two other types of less probable but also possible behavior: soliton formation (the Davydov limit) and

frequency selection (the Frohlich limit).

PACS number(s): 87.22.Bt, 73.20.Hb, 73.50.Td, 84.60.Jt

I. INTRODUCTION

The phenomenon of a nearly lossless transfer of energy
over distances of up to 100 nm was experimentally
discovered by Kuhn [1,2] and Mgbius [3] in a type of
Langmuir-Blodgett monolayers [4] usually called J aggre-
gates or Scheibe aggregates. Historically, Scheibe aggre-
gates were first found in solutions of dye molecules and
their characteristic feature was a narrow absorption band
shifted to longer wavelengths relative to the monomer
band with an associated fluorescence band. This has also
been seen in various types of monolayers and the pres-
ence of the characteristic spectrum distinguishes them
from other molecular assemblies. The techniques used in
determining the structure of LB films of this type include
(i) low-angle x-ray diffraction, (ii) electron diffraction, (iii)
neutron diffraction, (iv) infrared spectroscopy; and (v) op-
tical microscopy using polarized light [4].

The interstices between the carbon tails are filled with
molecules (e.g., octadecane) which make the layer rigid
and compact (see Fig. 1). Using LB techniques, Kuhn [1]
has prepared J aggregates in which as little as 1 in 10000
molecules of chromophore was an acceptor, the rest be-
ing donors. It appears that the monolayer acts as a
cooperative molecular array which, after absorbing a
photon, channels the energy laterally over exceptionally
long distances to a particular energy-accepting molecule.
The effect has not been observed in aggregates, where the
molecular ““filler” is absent and whose structure is less
rigid and less ordered.

The energy migration in the layer of the host is facili-
tated by molecular interactions. To achieve fast exciton
transfer the chromophores of the host must be in a com-
pact arrangement which leads to the exciton hopping
time on the order of 107 !* s. For exciton traps exactly
interlocked in the molecular structure and with appropri-
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ate coupling present, it is expected that the host energy
may be trapped by the guest molecule in concentrations
as low as 1 per 10*. Thus, excited aggregates of the
Scheibe type can be viewed as a large array of coupled
quantum oscillators. A different (guest) molecule charac-
terized by a resonance frequency slightly lower than the
host molecule’s would therefore act as an energy trap
once it is incorporated into the lattice. In addition to en-
ergy trapping by the guest molecules in the J aggregate
there exists the possibility of electron transfer from the
excited host molecule to a guest molecule.

In the design of molecular photosensitive devices [5]
and in the understanding of biological systems such as
chlorophyll [6], the problem of efficient energy transfer is
of primary importance. An investigation into molecular
assemblies such as Scheibe aggregates, therefore, can
resolve that difficulty by indicating the proper choice of
molecular arrangements, which is essential for the devel-
opment of photoresistors, photodiodes, photomemory,
and photosensitive devices [7] based on the LB technique.
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FIG. 1. A schematic illustration of the bricklayered structure
of Scheibe aggregates with an oxycyanine and a thiacyanine
groups labeled A4 and B, respectively.
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Also, synthetic organizates are promising materials for
solar energy conversion.

In this paper we investigate the question of efficient en-
ergy transfer in two-dimensional molecular assemblies on
several levels of theoretical modeling. Section II is a re-
view of recent theoretical approaches to the problem.
First, the energy spectrum of a dimer is analyzed in order
to provide realistic values of model parameters. Then, a
one-dimensional chain is being simulated numerically in
order to demonstrate the sensitivity of transport proper-
ties to energy parameters in an aggregate. This is fol-
lowed by a brief review of the quantum-mechanical calcu-
lations carried out for a hexagonal lattice model with the
inclusion of donor and acceptor molecules. This section
is closed with a discussion of a spherically symmetric
model involving self-focusing and soliton formation. In
Sec. III a full-fledged quantum-mechanical theory of en-
ergy transfer processes is developed which accounts for
electromagnetic energy capture and transmission along
an aggregate. This is based on a perturbative approach
to the problem. In order to include the possibility of a
strongly nonlinear interaction under some circumstances
Sec. IV deals with a solitonic regime. This paper is
closed with a discussion and conclusions section where
arguments are given for a special role of planar geometry
in the remarkable efficiency of energy transfer.

II. REVIEW OF THEORETICAL APPROACHES

A. General considerations

There exists a vast body of literature concerned with
the question of exciton transport and trapping in molecu-
lar crystals and biological molecular aggregates. Since
these systems bear a relationship with J aggregates, we
first give a brief overview of the most important results
known to date which will serve as guidelines for the de-
velopment of our models.

The main dividing line in the study of excitons is
whether they are localized (incoherent) or delocalized
(coherent). It is believed [8] that exciton migration in the
absence of phonons occurs coherently at first with
(x?) «<t?, where x denotes position and ¢ time, later in
time becoming incoherent and satisfying the relationship
(x?%)~t typical for diffusion. The two regimes leave
their imprint on the absorption lines. Lorentzian charac-
ter of the absorption lines is due to coherent behavior
while Gaussian forms arise due to incoherent motion.
The former is highly temperature dependent and occurs
with weak exciton-phonon coupling, the latter takes
place when exciton-phonon coupling is strong. In gen-
eral, therefore, one should expect an intermediate regime
where both localized and delocalized excitons participate
in energy transfer [8—10]. The problem is rather complex
and the presence of traps makes it even more complicat-
ed. Our approach should explore the many possible
modes of behavior that exist and discuss the physical
manifestations of each of them.

In fact, a recent paper [11] lists the following six path-
ways to energy relaxation in LB monolayers with dye
molecules present: (i) monomer fluorescence, (ii) aggre-
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gate fluorescence, (iii) energy trapping, (iv) energy migra-
tion between donors, (v) excimer formation, and (vi) ener-
gy migration to lower-energy sites and trapping there.
The various processes are manifested by inhomogeneous
broadening of phosphorescence spectra.

The first phenomenological attempt at modeling energy
transfer in Scheibe aggregates was made by Mobius and
Kuhn [12,13] using the so-called coherent exciton model
involving a finite-size domain of exciton coherence. This
attempt explained, in simple terms, the observed temper-
ature dependence of the fluorescence quenching ratio
(linear with T). Below, we review other theoretical mod-
els proposed to describe energy capture and transfer pro-
cesses in molecular assemblies such as Scheibe aggre-
gates.

B. The modeling of a dimer

The molecules that we are concerned with are chromo-
phores, i.e., they have a delocalized electron which can be
excited by light to a higher-energy level above the ground
state with () denoting the energy difference. Note that
throughout this paper we have used units with #=1. We
model this system by an oscillator with an appropriate
energy spacing. In addition, the close packing of chro-
mophores induces a strong electron-electron interaction
(of dipole-dipole type) with resonant energy J. We have
then the following Hamiltonian typical for the molecular
exciton model in a dimer [8]

H,=Q(AjA4,+454,)—JcaTa,+ 434, @1

where the operators AL and 4, (@=1,2) refer to a
creation and destruction of a quantum of excitonic ener-
gy at site a, respectively. The general eigenfunction for
the Hamiltonian H, of Eq. (2.1) can be written as

) =(adl+B4al)Q) . 2.2)

Consequently, the eigenmatrix takes the form
Q —J

H,=|_ J ool (2.3)
which yields the following eigenvalue equation:

(Q—E)*—J*=0. 2.4)
Hence the eigenvalues E are found as

E=Q+J . (2.5)

Using the data for oxycyanin yields 2=3.125 eV for a
monomer, E=3.44 eV for a dimer, and, consequently,
the coupling constant J is calculated as J=0.315 eV.
These data will be used in the following sections for mod-
eling of monolayer assemblies composed of both donor
and acceptor molecules. To properly simulate exciton ki-
netics we require lattice models. Hence, the next subsec-
tion provides an overview of recent numerical simula-
tions for a one-dimensional chain.

C. Numerical simulations in 1D

Since the bricklayer structure illustrated in Fig. 1 ap-
pears highly anisotropic with substantial elongation along
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the x axis, it seems appropriate to study a one-
dimensional (1D) approximation to the problem as a first
step towards understanding cooperative behavior. First
of all, neglecting the presence of acceptor molecules gives
the Hamiltonian

+
H®='3 Q4)4,~JAafl(4, +4,.).

n=-—oo

(2.6

Taking the eigenfunction in the form of a linear superpo-
sition of excitations,

+ o0
lp)= 3 a,4}lQ),

n=-—o0

2.7

results in the following stationary Schrodinger equation:
Ea,=Qa,—J(a,_;+a, ). (2.8)

Introducing an acceptor molecule at site n =0 requires
the use of a full Hamiltonian in the form

H'P=H{®+H.] , (2.9)
where the acceptor contribution is
H2=—vAala,+U,—niala,+4_))
+Ay(Aal+4at ).
(2.10)

Using the wave function of Eq. (2.7) and writing the
time-independent problem for the Hamiltonian H'P of
Eq. (2.9) as

H'P|y)=z|¢)

produces a system of recurrence relations for a,,:

(2.11)

(z—=Q)a,=—J(a, +a,_;) (n7¥=—1,0,1), (2.12)
(z—Q+V)ag=—Jyla;+a_,), (2.13)
(z—Q)a,=—Jgag—Ja, , (2.14)
(z—Q)a_,=—Jgap—Ja_, . (2.15)

Only symmetric solutions exist for which a,=a_, and,
for n > 1, they yield

a,=p" . (2.16)

Equation (2.13) then gives
(z—Qu"=—J(u " 14+u "1, 2.17)

which yields a very important relation between the bind-
ing energy z and the decay rate of the wave function,

(z—Q)=—J(u+1/u) . (2.18)

In order to have the wave function centered around the
acceptor and extending over many sites it is required that
u be close to 1. Next, considering Eq. (2.17) for n =2,
ie.,
(z—Qul=—J(u*+a,), (2.19)

it is found that a; =y, while from Eq. (2.14) it follows

that ap=J /J,. It can be easily seen that in order to have
a, large, J, has to be small. Finally, Eq. (2.15) gives an
eigenvalue condition which is expressed in terms of u as

pAJr—2J3)—JIVu+J2=0. (2.20)

Dimensionless quantities w and ¥ are now introduced as

V=wlJ , Jy=yJ, (2.21)
so that Eq. (2.20) becomes
pA(1—2y%)—wu+1=0, (2.22)
with its solutions
1
,u172=2(1_—2y2){wi(w2—4+87/2)1/2} . (2.23)

It is easily seen that with ¥ small we need w~2. Then,
taking w =2 an optimal case is found for y <<1 as

Numerical simulations of the time-dependent
Schrodinger equation for the chain Hamiltonian of Eq.
(2.9) were recently performed which involved solving
coupled differential equations [14,15]. The numerical
simulation was performed [14] for the chain of 1000 mol-
ecules. In these simulations the acceptor was placed in
the middle of the string of molecules. The initial condi-
tion assumed the same probability of excitation for each
particle. This situation corresponds to the irradiation of
the molecular assembly by a short laser pulse. It can
then be seen that the acceptor causes the probability dis-
tribution a,(?) to evolve in time, especially at locations in
its immediate vicinity. In general, the probability ampli-
tude at a given site tends to oscillate with the exception
of the acceptor site itself where the excitation probability
increases. In general, no case led to the observation of a
large probability of excitation at the acceptor site. How-
ever, for the optimal choice of parameters the situation
changes dramatically (Fig. 2). The probability at the ac-
ceptor site attains very large values at the cost of the
neighboring sites, whose excitation probabilities decrease.
In other words, the acceptor absorbs the probability am-
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FIG. 2. The evolution of probability distribution [14] for the
optimal choice of parameters: w=2, y=0.1. The time inter-
vals are from =1 to 10. 1000 molecules have been used and
the acceptor is located at molecule 500.
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plitude from the neighboring sites. Furthermore, the
probability of excitation at the acceptor site increased to
large values before the disturbance has propagated over a
long distance, i.e., the process is very fast. Although this
type of behavior is very desirable it is not entirely clear
whether the required fine tuning of the model parameters
used is in agreement with experimental results. We tend
to believe that this is an artifact of the one-dimensional
character of the model used.

D. The hexagonal lattice calculation

The quantum-mechanical model of the energy transfer
in J aggregates formulated by Bartnik and Blinowska [15]
was developed using a time-dependent approach having
much in common with the Davydov model [16] of energy
transport in peptide chains. It was shown that, in a two-
dimensional tight arrangement of molecules, a shallow
bound state may exist. The spatial extent of such a shal-
low state is large and, therefore, an exciton capture is
possible over considerable distances. The condition for
the existence of such a shallow state was found by trans-
forming the Hamiltonian into momentum space and solv-
ing the obtained Schrodinger equation numerically. It
was found that the resonance interaction between accep-
tor and donor molecules should be slightly smaller than
J

H%Dzz [QArTm Anm —JAJm(An—l,m +An +1,m + An,m*1+An,m +l+An+1,m—1+An—1,m+l)+H'c'] ’

n,m
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FIG. 3. A schematic representation of the hexagonal lattice
structure used in Sec. II C.

the resonance interaction between donor molecules; ex-
actly what would be expected from their chemical nature.

Before we actually study the role of acceptor sites
(characterized by quantities with a subscript “0”) we wish
to point out the properties of the donor part of the sys-
tem. Placed on a hexagonal lattice (see Fig. 3) the ap-
propriate Hamiltonian is

(2.24)

where subscripts #n and m label the position of lattice sites on a hexagonal lattice (see Fig. 3). It should also be noted
that due to lattice rigidity, Q =e—D where ¢ is the exciton energy of an isolated donor molecule and D is the deforma-

tion energy of a donor molecule in the lattice.
The wave function for the donor system is in the form

¥)=3 a,, (4], 10),

(2.25)

which yields the following time-dependent Schrédinger equation:

il =HP )

or explicitly

ot

. 0
l*anm(t)_ﬂanm _J(an—l,m +an+1,m +an,m —1+an,m+1+an+1,m—1+an—l,m+1) .

(2.26)

(2.27)

In order to account for the presence of an acceptor molecule consider the Hamiltonian

H2D=H%D +H2D

acc ?

(2.28)

where H32P is that of Eq. (2.24) and H . defines the acceptor energy through

HPL =—VAldg—(Jo—I){[Af(A_ o+ A0+ Ag 1+ Ag_+A_,+4, _,]+H.c} .

The value of J, is not readily available from experimental
data but has been estimated theoretically for optimal en-
ergy capture over distances exceeding 50 nm as [15]
0.81 < (J,/J)<0.9. Within this model, the probability of
energy capture by an acceptor molecule is equal to the
overlap of the wave functions

<¢0W’B>=¢B(r0) . (2.30)

(2.29)

[
The asymptotic behavior of ¥y is
Yp(r)~Kylar) ,
where K, is a Bessel function and a=(2m|E|)!"%. The
optimum value of a for the energy capture probability is

found to be inversely proportional to the average distance
between the site of excitation and the acceptor molecule,
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i.e., a=(2ry)" L. For the conditions used in experiments,

where the acceptor concentration is 1:10000, we have
ro=50 nm. This results in the requirement on the exci-
ton binding energy to be very small, i.e., E $5.5X107°
eV.

E. Spherical (ring) soliton calculations

A completely different approach to the problem of en-
ergy transfer and trapping in Scheibe aggregates has been
recently advocated in two papers [17,18]. The main idea
put forward is to assume a strongly nonlinear regime of
behavior on the basis of exciton-phonon coupling. The
mathematical model developed as a consequence of this
approximation starts from a Schrodinger equation for the
molecular exciton’s wave function [or more specifically,
its amplitude a(r,t)] as

i—a——A+JV2+ V(r) |a(r,t)=0,

o (2.31)

where A is the energy value at the bottom of the exciton
band, J is the resonant interaction energy between two
neighboring molecules, and V(r) is the local trapping po-
tential due to a displacement of the molecules from their
equilibrium positions. It is then argued that a Toda ap-
proximation is applicable to this anharmonic lattice dy-
namics. The related deformation p=|a|? is given by

p,(t)=a 'sinh*(gl)sech?[gq(nl —vt)] , (2.32)

and the trapping potential then is found as
V( r,t)=02p(r,t). A self-consistent solution for a(7,t) is
then found as

a(r,t)=a~'%sinh(gl)sech[q(r —ry—vt)]
Xexplik(r—ry)—iot], (2.33)

which yields a nonlinear Schrddinger equation as the
effective evolution equation for a(r,?), i.e.,

i-aa7—A+JV2 a=—o0%al%a . (2.34)
Obviously, continuum limit is taken and a two-

dimensional analysis is carried out which results in the
formation of ring waves that exhibit expansion and col-
lapse. The size of the obtained ring wave was estimated
as 600 A and the propagation velocity as 10-20 sound
velocities, i.e., approximately 10* m/s. While numerical
estimates demonstrate lifetimes of the ring waves compa-

tible with experimental values (i.e., on the order of 10~ °
|

thotons: f d3p [wpcgcp_*_ [gpcp 2 A:ei"(p‘d)+H.c.
n

s), it is not entirely certain that the self-trapping limit is
in fact appropriate in this problem. Indeed, based on ex-
perimental results of Inoue [S] it appears that the
exciton-phonon coupling constant is less than the thresh-
old value needed for self-trapping and hence this puts in
question the validity of a nonlinear approach. However,
since the experimental value is less than this threshold by
only about 20% we cannot discount this possibility off
hand. Therefore, in the following two sections we devel-
op both a perturbative and a strongly nonlinear theoreti-
cal model of the aggregates.

III. QUANTUM FIELD THEORY APPROACH

A. The total Hamiltonian

In this section we propose a more detailed approach to
the problem of energy capture and transmission in
Scheibe aggregates. We shall include the presence of
donor molecules, an acceptor, and account for the pres-
ence of elastic modes of vibration of the lattice (phonons).
Quanta of electromagnetic radiation will be explicitly in-
corporated in the Hamiltonian through a photon field
designated by creation and annihilation operators c;r and
¢,, respectively.

The postulated Hamiltonian takes the form

H=Hdonors+H +H +th0tons ’ (3.1)

acceptor phonons

where the Hamiltonian for the donor molecules is

Hdonors—_—z[‘Q’AIAn“JAJ(An~1+An+1)] ’ (32)

n

and the acceptor term is
Hpeepior =QoAbAdg—Jo[AN(A_ |+ 4)]+H.c. (33

The phonon part of the Hamiltonian is similar to the one
postulated for peptide chains [16] but it is symmetric in
chain positions

p 2
n
H phonons = 2 2m

n

+k(x, —x,41)?

+x0A A, (2%, —x, _1—x,.) [, (3.4)

and p, denotes the linear momentum at site » with mass
m, k is the elastic constant, while Y, represents the
exciton-phonon coupling coefficient. Finally, the Hamil-
tonian for the photon field is written as

, (3.5)

where p is the momentum of a photon, c; and c, create and annihilate a photon with momentum p, respectively, and d
is the chain’s displacement unit vector. In the dipole approximation g,, the coupling parameter between photons and

excitons, is a constant number independent of p.

B. Excitons in momentum space

The Hamiltonian for excitons can be rewritten as

+ oo

Hegon= 3 [QAJA,—JAN A, +4, )—(Q—00A4]4,], (3.6)

n=—o
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and the relative acceptor energy constant is defined as
V=0—0Q,>0. We now change the basis according to
1 T ;
A,=—— dk e™ 4, ,
n ‘/277_ f_ﬂ_ € k

(3.7)

which results in the following separation of the exciton
Hamiltonian

H =kaA,IAkdk—£fdk Al [ dE 45, (3.8)

exciton

where the dispersion relation is given by
Q,=Qy—2J cosk . (3.9)

Note that close to the bottom of the exciton band ; is
parabolic unlike in the acoustic phonon (linear) case.

C. Phonons in momentum space

Next, the phonon Hamiltonian, Eq. (3.4), is Fourier
transformed to obtain

1 k
thonons_ﬁfdqp(q)p(_q)+?f dg 2(1—cosq )x(g)x(—gq)

+)(0f dk,dk,dq A,I1 Aklx(q)S(kl —k,—q)2(1—cosq) . (3.10)
Then, we second quantize the phonon dynamics in a standard way through
1 T
x(g)=—5(a, +a,) (3.11)
q (2qu )1/2 q q
and
172
_. | M9 +
plg)=i 2 (ag—a,) . (3.12)
As a result, the following form of the phonon Hamiltonian is obtained:
Hpponons = [ dq 0gala, + [ dic,dky2x[1—costk; —k;) 1A} 4y (ay i +al ), (3.13)
where the dispersion relation for w(q) is given by |¢)=COAT|Q)+f 4k 1/120(]()6;“9) ) (3.16)
o(g)=[2wy1—cosq)]'"?, (3.14)
where
i.e., is that for acoustic phonons. Note that both w(q) Foy_ ¥
and x(q)=2xy(1—cosq) are slowly varying functions of h/’k0>_ |¢k0>+ | ¥scatterea) » (3.17)

momentum. This Hamiltonian is of the type derived ear-
lier for molecular excitations [19]. The exciton-phonon
interaction has been recognized as crucial in the
phenomenon of self-trapping of molecular excitons [8].
The determining factor in the competition between locali-
zation and delocalization of excitons is the ratio of the
lattice spacing to the extent of the exciton wave function.
The possibility of these two extreme regimes will be dis-
cussed at length in Sec. IV. The intermediate regime of
excitons ‘“‘dressed” by phonons will be treated perturba-
tively in the remainder of this section.

D. Coupling one oscillator and radiation

For simplicity we use scalar photons here, i.e., drop the
polarization index. The relevant Hamiltonian for a single
oscillator interacting with a photon field can be written as

H=0A4"A+ [ d*k[wcfc,+g (Acf+ aTe,)],
(3.15)

where the notation is the same as used in the previous
calculations. Since the problem under consideration is of
scattering type the wave function is in the form of the
linear combination below

represents a combination of a plane wave and a scattered
wave. Thus

(|l > =83k —ko)+ (| larterea - (3.18)
The corresponding eigenvalue problem is

Hlyp)=z[¢) , (3.19)
where z=E +ie. This gives

Cor+ [ d’kgiyl (K)=2C, (3.20)
and

o ¥ (k) +Cog(k)=z9] (k) . (3.21)
The first of the two equations above yields

Co=(z—0) " Nglyl,), (3.22)
while the second yields

o9l +lgdz— )" Kely d=zlyl Y. (3.23)

We then use the Lippman-Schwinger expansion for |¢l;r(0)
as
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9k ) =1gi ) H(z—w) g )z =) elyl ), (3.24)

)~ !(g| appears as an energy-dependent
Equation (3.24) can be explicitly

where (g )(z—Q
effective potential.
solved for |¢£0) as
J

D=z-0—(glGy2)lg)=z—0— [ d’k(z—w;) gX k) ~z—Q—img¥k,) ,

where the real part determines the frequency shift while
the imaginary part determines the width of the spectral
line.

lg)(gle,)
—Q—(glGy(z)lg) ’

where we have denoted the propagator as Gy(z)
=(z—w;)”!. The denominator in Eq. (3.25) can be es-

[0k, =1d,) +(z =) 7' (3.25)

timated as

(3.26)

true. We also set g(p)=g, so that the interaction part of
the Hamiltonian in Eq. (3.27) becomes

HY,=¢go [ dp.dp,[c(p)aTp)+cT(p)A(p)].  (3.29)
E. Excitons coupled to radiation Consequently, the eigenequations take the form
The appropriate Hamiltonian for a collection of exci- _ _ 2 1t
tons, photons, and coupling terms between them is (z=Qp(k) gofd pld}l’o(pl’k) (3.30)
H= [ dk Qa4+ [ d*pw,cle, and
— T =
+ [dpg(p)c, 4" (p-d)+H.c.] . (3.27) (2= Wy, (P) =80y - S
The trial wave function for the problem is taken as A perturbative approach is then carried out with a linear
combmatlon of a plane wave and a scattered wave for
W)= [ &y} (p)e]I0)+ [dk pkrallo) . (.28 ¢,,0(p>as
Then, we rescale momentum according to p—p/d and %0 3(P—Po) F 83 ¥scattereal D) - (3.32)
introduce the momentum components parallel and per-
pendicular to the molecular system as p, and p, respec-  This leads to the results
tively. Note that in the case of a molecular chain the _ _ g0
space spanned by p, is two dimensional and that of p, is P(k)=go(z =) 8(pj (3.33)
one dimensional. For a molecular surface the opposite is and
J
Yl (P)=8(p) —p){8:(p,—p) +(z—0,)  [z—Qp)1 g3} . (3.34)

The latter equation means that the result of an incident electromagnetic wave being scattered off a collection of excitons
is a plane wave in the direction normal to the surface and a scattered wave within the surface containing a chain of po-
larizable molecules. Thus, light is shown to induce a plane exciton wave.

Assuming that polarizable molecules form a two-dimensional lattice (rather than a one-dimensional chain, as done

previously) results in a similar formula, namely,

Uy (p)=8,(p, —p?){8(p,

O

Whereas in one-dimensional scattering there is only
reflection and transmission of incident light, in two di-
mensions a genuine scattered wave emerges. Moreover,
due to the momentum or energy mismatch between exci-
tons and light, p is very small in magnitude and hence
Q(p?)=0(0).

Although this is not directly applicable to molecular
aggregates, it is nevertheless instructive to see the
difference between the previous two cases and a fully
three-dimensional situation. Taking a Hamiltonian in the
form of Eq. (3.27) and diagonalizing it yields the matrix

Q(p) g(p)

g(p) w(p) (3.36)

—p)tesz—w,) z—Q(p] 7!} .

(3.35)
-
whose eigenvalues z satisfy the equation
(Q,—z)w,—2z)—g}=0. (3.37)
Hence
Q,=3{Q, to,£[(Q ) +4g21'/% (3.38)

and, as a result, the energy spectrum develops two dis-
tinct branches separated by a gap which widens as p —0.
This is illustrated in Fig. 4.

What we have demonstrated here is typical for pho-
tosensitive materials such as dye molecular assemblies [8]
where polaritons form as a result of interactions of the ra-
diation field with an exciton. Polaritons represent quasi-
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particles of both photonic and excitonic character. The
energy threshold depends on the crossover position of
photon and exciton dispersion curves (see Fig. 4). In ad-
dition to the so-called extraordinary polaritons shown in
Fig. 4, ordinary polaritons [20] exist with a linear disper-
sion relation: w=ck /n, resulting from light polarization
being perpendicular to the optical axis. For extraordi-
nary polaritons, the upper branch of the dispersion curve
describes longitudinal polaritons with exciton polariza-
tion parallel to the propagation direction. The lower
branch refers to transverse polaritons where exciton po-

J
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larization is perpendicular to the direction of propaga-
tion.

F. Inclusion of phonons

This part of the quantum-mechanical approach to the
photon scattering problem off the molecular lattice sup-
porting excitons is intended to incorporate lattice vibra-
tions in the Hamiltonian. Designating a;r and q, for the
creation and annihilation operator of a phonon with
quasimomentum g, respectively, the total Hamiltonian of
the system is

H=[ ak oo alac—v [ dk al|| [ dk 4, |+ [ dge,aa,

+ [ dkydk, 4] 4 xtki—Ky)laf i Fay i )+ [ dploycle, +golc, 4] +cf 4

(3.39)

PP 4 P||)]’

where p| represents the photon momentum component parallel to the molecular chain. This is consistent with earlier
formulations of the molecular exciton problem [21]. Subsequently, we make an approximation which retains only

single-phonon scattering processes which is called the Tamm-Dankov approximation [22,23]. Then, the trial wave
function takes the form
lv)= [ a% v} (p)c]IQ)+ [ dk pk) 4f1Q)+ [ dk dg p(k,q) AjafIQ)+ [dp dg @, (p.9)cfall), (.40

where the subscript ph refers to the phonons while ¥ refers to photons. As a consequence, the eigenvalue problem

reduces to the following set of four coupled equations:

(z—w, )¢;0(p):go¢(p|| )

(z=Q)ptk)=—Vf(k) [ dk'f(k" gk )+g, [ d;lipjo(pl,kwf dk'x(k —k" gk’ k—k') ,

(z—-Qk—eq)¢ph(k,q):)((q)<p(k+q)+g0f dzplqa?,(pl,k;q)—Vf(k)f dk'f(k’)cpph(k’,q) )

and

(Z_(l)p*sq )qny(p,q):goq?ph(p“,q) . (3.44)

Since the coupling to electromagnetic radiation is rela-
tively weak, the first step towards solving this system is to
expand the wave functions in powers of g,. Thus,

Uh (P)=85(p—po)+(z—w,) " 'gop(p,) , (3.45)

Q(p)

Qg

energy E

momentum p

FIG. 4. A schematic illustration of the dispersion relation
given by Eq. (3.38) for exciton-phonon coupling.

(3.41)
(3.42)
(3.43)
I
and, as a consequence,
Ponk,q)=(z—Q; —e,) X(@)p(k +q) (3.46)
and
@, (p,q)=(z—w,—£,) " 'go@on(p)>q) (3.47)
=(z—w,—g,) (z=Q, —g,)"!
Xgox(q)plp+q) . (3.48)

In Eq. (3.46) we have dropped the contribution due to the
last term of Eq. (3.43). This term renormalizes the
exciton-acceptor interaction and although it is simple to
include it in the equations that follow, we have dropped it
due to the smallness of the overlap between y(k) and
f (k). The only unknown part of the wave function is at
this stage ¢(k) which satisfies the following equation:

(z = Q. )p(k)=go8(k —p§)~Vf (k) [ dk'f(k")p(k")

x*(q)
z—eg,—~QUk—gq)

+o(k) [ dg (3.49)
The first term on the right-hand side represents an exci-
ton plane wave induced by photon momentum transfer to
the chain. The second describes scattering processes off
the acceptor molecules while the last one arises due to
scattering effects off phonons. It is worth commenting on
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the form of the third term since it has both a real and an
imaginary part, the latter giving rise to a finite exciton
lifetime. Thus, we can renormalize the exciton dispersion
relation according to

xi(q)
d .
J da z—e,—Qk —q)

Qk)=Q(k)— (3.50)

From its form, it can be concluded that the exciton ener-
gy spectrum is shifted as a result of interactions with
phonons. The imaginary part gives rise to a width of the
spectrum.

In conclusion, this section provided a step-by-step de-
velopment of the quantum-mechanical formalism for
electromagnetic wave interaction processes off the molec-
ular assemblies. The interaction with photons was shown
to induce an excitonic plane wave which then interacts
with acceptors and subsequently with phonons. In this
derivation we have included the presence of acceptor and
donor sites and studied the propagation of excitons re-
sulting from photon absorption processes. The influence
of phonons was shown to be twofold with an energy shift
and the line broadening effect accompanying it. The
technique of calculations proposed in this section was a
perturbative one which corresponds to a relatively weak
coupling regime. A schematic illustration of the physical
situation analyzed here is shown in Fig. 5 where an exci-
ton wave produced at a donor molecule is scattered off an
acceptor.

We now give a brief overview of the thermal properties
of both coherent and incoherent excitons in the presence
of impurity molecules acting as energy traps. The results
discussed below are relevant to the perturbative approach
adopted in this section and much research has been done
in the past on which we can draw. Capture of exciton en-
ergy by impurity molecules (traps) depends crucially on
whether the excitons are coherent or incoherent. It was
found [9] that incoherent excitons, with the inclusion of
phonons, are characterized by an effective radius R, for
capture by a trap, which typically exceeds 10 lattice
periods. The quenching rate is proportional to the square
of the concentration of impurities. The transfer probabil-
ity for exciton migration depends inversely on the sixth
power of the distance between sites and, at low tempera-
tures, is proportional to the absolute temperature, i.e., is
thermally activated. This is consistent with experimental
observations [24] for molecular crystals such as na-
phtalene, where the efficiency of energy transfer is propor-
tional to T for low concentrations of acceptor molecules
(1077 to 107%). A possible explanation is that in a com-
bined kinetic and diffusion model thermal fluctuations as
well as phonons assist in hopping.

On the other hand, for shallow energy traps it was
found [25] that coherent excitons are much more likely to

J
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FIG. 5. A schematic illustration of the process of elec-
tromagnetic energy capture and transfer through exciton waves
as discussed theoretically in Sec. III.

be captured. Quenching rate of coherent excitons by iso-
lated impurities is proportional to the cubic power of
their concentration [10]. If the trap depth is much less
than the Debye energy, then one acoustic phonon is
sufficient to capture an exciton on an impurity [9]. Oth-
erwise, exciton capture is a multiphonon process. As a
consequence, one finds that at low temperatures (com-
pared to trap depth energy) the capture cross section is
proportional to 7~ !/? while at high temperatures it is
proportional to T°/2. Then the probability of capture
shows a crossover from a nearly constant value at low
temperatures to that proportional to T* at high tempera-
tures. For deep trap levels the probability of coherent ex-
citon capture is largely temperature independent up to
high temperatures where it 1is proportional to
exp(—AE /kT) with AE denoting activation energy [25].
The intermediate case of both coherent and incoherent
excitons has also been studied [10,19] and the picture is
rather complicated with several distinct kinetic regions of
behavior.

Whereas this section focused on the perturbative
effects of exciton behavior, nonlinear aspects of the model
undoubtedly require the analysis of soliton formation and
related effects. This will be studied in the next section.

IV. THE NONLINEAR REGIME

In this section the model Hamiltonian will be com-
posed of only two main types of elementary excitations,
i.e., excitons and phonons coupled together. The
influence of photons is very simple and, as shown before,
amounts to a creation of an excitonic plane wave. The
approximate Hamiltonian studied here includes both
donor and acceptor lattice sites and is given below

H=§ Q) A A+ e(@afa, +3 x(k,q) A 4, A (a)+a,)

q k,q

— S [V—Jcostk+8k)d N Af Ay 4 pr+ Al 4 ax Ax) -

k,Ak

(4.1)

Note that the last term above is a k-space representation of the acceptor energy and interactions with the neighboring
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donor sites. This term will be seen to be responsible for k-space dispersion and, under special conditions, self-focusing
may take place. We have denoted lattice spacing by d. Then, Heisenberg equations of motion for the two types of
operators a;, and A, are obtained as

aak +
i =e(ka+ 3 xtk,g) Al A, 4.2)
q
and
A
i atk =Qk) A+ 3 x(k—q,9) Ay _ (al+a,)— 3 [V —J costk +AK)d N Ay s + Ak —ai) - 4.3)
q Ak

Our objective will be to study the dynamics of exciton and phonon quantum fields under the assumption of their strong
coupling. Moreover, on the basis of experimental data reviewed in Sec. I, a type of Born-Oppenheimer approximation
will be adopted which assumes the phonon dynamics to be substantially faster than that of excitons [26]. This means
that we seek solutions to Eq. (4.2) in the form

o, t
a,=e *apl, (4.4)

so that da; /3t =iw,a; and Eq. (4.2) can be solved for a, to give
a=—[o,+e()] ' S xk,q)A]_, 4, , 4.5)
q

which serves a dual purpose of formally solving for a, and decoupling @, from A4,. We then substitute Eq. (4.5) into
Eq. (4.3) to obtain

04y _
i3 =) A, — 3 [0, Te(@)) Xk —4,9) Ak -y ZX(4,4) A4 Ay
q q
_2[V_JCOS(k+Ak)d](Ak+Ak+Ak._Ak) . (4.6)
Ak
r
In order to solve the above equation, two distinct asymp- for A, is of the nonlinear Schriodinger type in k space.

totic regimes will be considered depending on the form of  Consequently, its solution is given by

the coupling constant x(k,q). Each of these regimes is .
exactly solvable. A (t)=exp(—iE t) A, (0), (4.8)

where A4,(0) is the classical envelope in the sech soliton
A. Frequency selection (Frohlich regime) form below
In this regime the following will be assumed. Ai(0)=agsech(Ak) “9)
(a) The sum over Ak is restricted to only three terms: with its amplitude
Ak=0, +/d, and —w/d. The first term normalizes . ~ 2 —1,2
Q(k) while the last two are approximated by ao=%{—2(E;—Q)[w,+e(0)]/[x(k,0)[*} ’ 4.10)

i 3%4 and the inverse width

—(V—J) Ak P—F .
2 dk? A=[—(E,—Q)/T]'%. 4.11)

(b) The coupling constant is truncated to involve only  We have introduced the effective dispersion parameter
long phonon wavelengths (¢ =~0) as having effects on

scattering with excitons. Thus, ¥ _y=nr . (4.12)
d? '

] ) Note that the width of this k-space soliton increases with

and is zero otherwise (g7°0). As a result, Eq. (4.6) takes  V/'F and its amplitude is proportional to the coupling

x(k,q)=y,, for ¢g=0,

the following approximate form: constant . The soliton energy E, is given implicitly
l_aAk G — lx(k,0)d |? oy thrc};ugilh the conservation of quasiparticles requirement,
dt k wo+e(0) kK Ak such that
- 2 4.13
_ W —nm? 34 N=3 4] 4.13)

, 4.7)

d2 k2 . .
_ 9 We conclude this part by emphasizing that this particular
where Q=Q—V+J. Therefore, the equation of motion  regime, based on conditions (a) and (b), leads to self-
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focusing in the frequency spectrum [27] which is narrow-
ly peaked at the long-wavelength limit kK =0 and de-
creases virtually exponentially as k increases. An entirely
opposite scenario is possible under different working con-
ditions.

B. Soliton formation (Davydov regime)

In this particular limit we make the following assump-
tions.

(a) Both x(k,q) and the energy dispersion formula for
phonons w(q) and €(q) are assumed constant parameters.
This, of course, rules out acoustic phonons but allows for
a coupling with optical phonons. The latter two quanti-
ties are, of course, slowly varying functions of g for opti-
cal phonons with g =0. Thus, we take

X(k,q)g)(o >
wo(g)=w, ,
elg)=¢g, .

(b) The presence of acceptor sites is ignored so that the
summation over Ak only includes the central value of
Ak =0.

(c) The dispersion relation for excitons is expanded to
second order according to

QUK =0+ 0k .

This set of conditions appears to be much more stringent
than previously thought.

As a result, the following equation of motion is ob-
tained for A :

, 2 = K
i =0odi =5 3 A Al A, +0,Kk24,

99

4.14)
where we have introduced the following parameters:
Q,=9,—V+J,
0,=0,+3d?,

IXol?

k=N

CLJo+€0

We then follow the recently developed method of
coherent structures for strongly interacting quantum sys-
tems [28] and introduce a classical field corresponding to
A as

Ax,t)=N"123 4, (t)e’™™ . (4.15)
k

Simultaneously, the equation of motion for the field
A (x,t) takes the form of the nonlinear Schrédinger equa-
tion in real space,
oA _ = = 3*A
—— =QpA +Q
1 ot 0‘)4 2 3

Its sech soliton solution is

—k|ANEA . (4.16)

x2
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172 exp{i[k;(x —xy)—aw,t]}

Alx,t)= l‘/ili , (4.17)

cosh | £ (x —Xo—vt)

d

where k; is the wave number of the associated carrier
wave, u is the inverse width, v is the velocity, and o, the
carrier wave frequency. The normalization condition

[ 1A Pdx =, (4.18)

relates A and p in a linear relationship. Numerical de-
tails can be found in the literature on the nonlinear
Schrodinger equation [16]. However, note that u is pro-
portional to k/Q,, hence the width of the soliton de-
creases with an increase of the nonlinear coupling param-
eter k. Simultaneously with it the amplitude grows in
proportion to V'k. A comparison of the two limiting re-
gimes presented in this section is given in Fig. 6. It
should be emphasized that strong coupling to phonons
tends to enhance soliton formation. However, as was cal-
culated earlier [19], self-trapping is destroyed with the in-
crease of lattice spacing and the growth of temperature
fluctuations. On the other hand, the self-trapping rate is
proportional to the phonon frequency and the mean po-
tential barrier transparency [29] (proportional to the ap-
propriate Boltzmann factor).

It is known [29] that within a range of exciton and
phonon coupling parameters self-trapped excitons
(Davydov solitons) and free excitons may coexist. The
two types of objects are manifested in the optical absorp-
tion spectra by (a) narrow peaks due to free excitons and
(b) a structured wide-band background due to self-
trapped states. Furthermore, the rate of production of
solitons depends on the absolute temperature and is be-
lieved to be proportional to T in the low-temperature lim-
it [30] and to V'T in the high-temperature limit [31].

(a) Ay

frequency
self-focussing

soliton
propagation

(b) At

FIG. 6. A graphic comparison of the Frohlich and Davydov
regimes.
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V. SUMMARY AND CONCLUSIONS

In this paper we have given an overview of theoretical
results concerning the very efficient electromagnetic ener-
gy capture and transport in two-dimensional molecular
assemblies such as Scheibe aggregates. We first outlined
a simple calculation of the eigenvalue problem for a di-
mer which gave values of model parameters for the
theory. We have then numerically verified some of these
results using a one-dimensional chain of molecules. It
was shown that the one-dimensional model requires the
presence of a fine-tuned acceptor level in order to gen-
erate a dramatic increase in the wave-function amplitude
at the acceptor site. This wave function is substantially
spread over the neighboring sites. This fine-tuning re-
quirement does not appear supported by experimental
findings. However, as we argue later in this section we
believe that this is simply an artifact of the one-
dimensional nature of the model. Calculations in two di-
mensions differ in this respect. A subsequent calculation
for a hexagonal lattice with both donor and acceptor
molecules present provided a criterion for efficient energy
capture by acceptors. The main finding here was that ac-
ceptor levels should be sufficiently shallow to optimize ex-
citon energy capture. A completely different approach
was also discussed which relies on very strong exciton-
phonon coupling and leads to a solitonic mechanism.
While the current state of experimental data does not en-
tirely preclude such a scenario, it does appear that it is
less likely to expect soliton formation for J aggregates
than in peptide chains.

In the next section, a field-theoretic Hamiltonian was
postulated as a starting point for calculations involving
excitons, photons, and phonons. A step-by-step develop-
ment of fully quantum-mechanical calculations was pro-
vided in which donor and acceptor sites are accounted
for. It was demonstrated that electromagnetic radiation
induces an exciton plane wave on the surface of the ag-
gregate which may be scattered off phonons and partially
captured by the acceptor site. Most of the calculations
were carried out in a two-dimensional space which has
very special properties from the point of view of energy
transfer.

The final section of the paper examined closely the pos-
sibility of two extremely nonlinear regimes. The first re-
gime assumed the predominant role of long-wavelength
phonons in scattering processes which led to self-focusing
of exciton waves to a narrow range of k vectors (and cor-
respondingly frequency values). This was quantitatively
described by a nonlinear Schrodinger equation in k space
with a soliton solution that models a condensation effect
in reciprocal space. Due to its similarity to an earlier
model of biological coherence we have referred to this
limit as the Frohlich regime. The other regime assumed
a constant value of the coupling parameter irrespective of
the phonon wave number. As a result, a real space non-
linear Schrodinger equation was found to model the exci-
ton dynamics. This is analogous to Davydov soliton for-
mation in peptide chains. This is why we refer to this
limit as the Davydov regime.

A recent series of papers [32,33] investigated exciton
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transport and trapping on spectrally disordered lattices.
Several important conclusions were reached that are of
relevance to our analysis. First of all, it was found that
no simple relation exists between fluorescence excitation
spectra and steady-state absorption spectra in structural-
ly disordered systems. Indeed, it was observed that in
some systems equilibrium may never be reached. Unlike
the conclusion reached by Kuhn [1], these authors find
the Forster hopping model adequate and include temper-
ature dependence of the spectral overlap. This once
again seems to indicate that several simultaneous energy
transfer mechanisms may be at play.

Finally, we wish to once again draw the reader’s atten-
tion to the fact that molecular assemblies such as Scheibe
aggregates have a planar geometry, i.e., are two dimen-
sional. We believe this is not accidental, but rather it is a
specific property responsible (and designed) for long-
range energy transfer. This can be seen when studying
the Schrodinger equation for a quantum particle in a
binding potential ¥V (x,y). It can be shown that shallow
potentials giving quantum bound states are very difficult
to find in both one- and three-dimensional geometries.
That means, that a very low level of tolerance is present
and small deviations, e.g., thermal fluctuations or cou-
pling to other modes, would destroy the binding power of
the local acceptor potential. Remarkably, however, two-
dimensional calculations yield a result with a binding po-
tential ¥ determined through the relation:

Ay=exp v

>

where A, is a specific constant. This indicates that de-
creasing potential strengths by simple factors lowers the
binding energy by orders of magnitude, consequently re-
taining bound states. That is only true for two-
dimensional systems. An interesting related experimental
observation was made for photosynthetic and biological
systems such as chlorophyll [6]. It was found that there
exists a significant qualitative difference between one- and
higher- (i.e., two and three) dimensional systems regard-
ing exciton quenching on low-concentration traps. In the
former case, quenching occurs much faster for periodic
arrangements of traps than for random ones. This is not
the case in higher-dimensional systems where there is
very little change in exciton quenching times. In 2D sys-
tems the typical aggregate decay function has the form

P(t) xexp

S VZ S &
T ’
where 7 is the exciton relaxation time with no quenching.
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